Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

نویسندگان

  • Jack J. Dongarra
  • Mathieu Faverge
  • Hatem Ltaief
  • Piotr Luszczek
چکیده

The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example, it is up to 40% faster when compared to the equivalent Intel MKL routine and up to threefold faster than LAPACK with multithreaded Intel MKL BLAS. Copyright © 2013 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Achieving Numerical Accuracy and High Performance using Recursive Tile LU Factorization

The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering, and is characteristic of many dense linear algebra computations. It has even become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected bt the TOP500 website. In this context, the chall...

متن کامل

Exploiting Fine-Grain Parallelism in Recursive LU Factorization

The LU factorization is an important numerical algorithm for solving system of linear equations in science and engineering and is characteristic of many dense linear algebra computations. It has even become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected in the TOP500 website. In this context, the challen...

متن کامل

LU Factorization with Partial Pivoting for a Multi-CPU, Multi-GPU Shared Memory System

LU factorization with partial pivoting is a canonical numerical procedure and the main component of the High Performance LINPACK benchmark. This article presents an implementation of the algorithm for a hybrid, shared memory, system with standard CPU cores and GPU accelerators. Performance in excess of one TeraFLOPS is achieved using four AMD Magny Cours CPUs and four NVIDIA Fermi GPUs.

متن کامل

Calculs pour les matrices denses : coût de communication et stabilité numérique. (Dense matrix computations : communication cost and numerical stability)

This dissertation focuses on a widely used linear algebra kernel to solve linear systems, that is the LU decomposition. Usually, to perform such a computation one uses the Gaussian elimination with partial pivoting (GEPP). The backward stability of GEPP depends on a quantity which is referred to as the growth factor, it is known that in general GEPP leads to modest element growth in practice. H...

متن کامل

Towards a Parallel Tile LDL Factorization for Multicore Architectures

The increasing number of cores in modern architectures requires the development of new algorithms as a means to achieving concurrency and hence scalability. This paper presents an algorithm to compute the LDLT factorization of symmetric indefinite matrices without taking pivoting into consideration. The algorithm, based on the factorizations presented by Buttari et al. [11], represents operatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Concurrency and Computation: Practice and Experience

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2014